Shape selection of twist-nematic-elastomer ribbons.

نویسندگان

  • Yoshiki Sawa
  • Fangfu Ye
  • Kenji Urayama
  • Toshikazu Takigawa
  • Vianney Gimenez-Pinto
  • Robin L B Selinger
  • Jonathan V Selinger
چکیده

How microscopic chirality is reflected in macroscopic scale to form various chiral shapes, such as straight helicoids and spiral ribbons, and how the degree of macroscopic chirality can be controlled are a focus of studies on the shape formation of many biomaterials and supramolecular systems. This article investigates both experimentally and theoretically how the chiral arrangement of liquid crystal mesogens in twist-nematic-elastomer films induces the formation of helicoids and spiral ribbons because of the coupling between the liquid crystalline order and the elasticity. It is also shown that the pitch of the formed ribbons can be tuned by temperature variation. The results of this study will facilitate the understanding of physics for the shape formation of chiral materials and the designing of new structures on basis of microscopic chirality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal deformation of imprinted twist nematic elastomers

A nematic elastomer film with a 90 o twist orientation between the top and bottom surfaces is prepared by chiral imprinting methods. The reactive achiral nematic monomers and crosslinkers are photopolymerized in the presence of a controlled amount of unreactive chiral dopant. The elastomer films possess a 90 o twist orientation even after the removal of the chiral dopant. The films exhibit an e...

متن کامل

Isotropic-cholesteric transition of a weakly chiral elastomer cylinder.

When a chiral isotropic elastomer is brought to the low-temperature cholesteric phase, the nematic degree of freedom tends to order and form a helix. Due to the nematoelastic coupling, this also leads to elastic deformation of the polymer network that is locally coaxial with the nematic order. However, the helical structure of nematic order is incompatible with the energetically preferred elast...

متن کامل

Modeling out-of-plane actuation in thin-film nematic polymer networks: From chiral ribbons to auto-origami boxes via twist and topology

Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director...

متن کامل

Shape instability on swelling of a stretched nematic elastomer filament.

Liquid crystalline elastomers combine the ordering properties of liquid crystals with elasticity of crosslinked polymer networks. In monodomain (permanently aligned) elastomers, altering the orientational (nematic) order causes changes in the equilibrium sample length, which is the basis of the famous effect of large-amplitude reversible mechanical actuation. The stimulus for this effect could ...

متن کامل

Director Structures in a Chiral Nematic Slab: Threshold Field and Pitch Variations

Abstract The liquid crystal director distribution is determined for a confined chiral nematic slab. The molecular director distribution of the field-controlled chiral nematic slab is directly calculated. The director profiles for the tilt and the twist angles, under different applied fields, are calculated in the slab with weak boundary conditions. Then, the dependence of the threshold field on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 16  شماره 

صفحات  -

تاریخ انتشار 2011